Multiple roles of mouse Numb in tuning developmental cell fates
نویسندگان
چکیده
BACKGROUND Notch signaling regulates multiple differentiation processes and cell fate decisions during both invertebrate and vertebrate development. Numb encodes an intracellular protein that was shown in Drosophila to antagonize Notch signaling at binary cell fate decisions of certain cell lineages. Although overexpression experiments suggested that Numb might also antagonize some Notch activity in vertebrates, the developmental processes in which Numb is involved remained elusive. RESULTS We generated mice with a homozygous inactivation of Numb. These mice died before embryonic day E11.5, probably because of defects in angiogenic remodeling and placental dysfunction. Mutant embryos had an open anterior neural tube and impaired neuronal differentiation within the developing cranial central nervous system (CNS). In the developing spinal cord, the number of differentiated motoneurons was reduced. Within the peripheral nervous system (PNS), ganglia of cranial sensory neurons were formed. Trunk neural crest cells migrated and differentiated into sympathetic neurons. In contrast, a selective differentiation anomaly was observed in dorsal root ganglia, where neural crest--derived progenitor cells had migrated normally to form ganglionic structures, but failed to differentiate into sensory neurons. CONCLUSIONS Mouse Numb is involved in multiple developmental processes and required for cell fate tuning in a variety of lineages. In the nervous system, Numb is required for the generation of a large subset of neuronal lineages. The restricted requirement of Numb during neural development in the mouse suggests that in some neuronal lineages, Notch signaling may be regulated independently of Numb.
منابع مشابه
Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts.
Stem cells and neuroblasts derived from mouse embryos undergo repeated asymmetric cell divisions, generating neural lineage trees similar to those of invertebrates. In Drosophila, unequal distribution of Numb protein during mitosis produces asymmetric cell divisions and consequently diverse neural cell fates. We investigated whether a mouse homologue m-numb had a similar role during mouse corti...
متن کاملNeural cell fate in rca1 and cycA mutants: the roles of intrinsic and extrinsic factors in asymmetric division in the Drosophila central nervous system
In the central nervous system (CNS) of Drosophila embryos lacking regulator of cyclin A (rca1) or cyclin A, we observe that several ganglion mother cells (GMCs) fail to divide. Whereas GMCs normally produce two sibling neurons that acquire different fates ('A/B'), non-dividing GMCs differentiate exclusively in the manner of one of their progeny ('B'). In zygotic numb mutants, sibling neuron fat...
متن کاملtramtrack acts downstream of numb to specify distinct daughter cell fates during asymmetric cell divisions in the drosophila PNS
Asymmetric cell divisions allow a sensory organ precursor (SOP) cell to generate a neuron and its support cells in the Drosophila PNS. We demonstrate a role of tramtrack (ttk), previously identified as a zinc finger-containing putative transcription factor, in the determination of different daughter cell fates. Both loss of function and overexpression of ttk affect the fates of the SOP progeny....
متن کاملAsymmetric Localization of a Mammalian Numb Homolog during Mouse Cortical Neurogenesis
During Drosophila neurogenesis, differential segregation of Numb is necessary for daughter cells of asymmetric divisions to adopt distinct fates, at least partly by biasing the Notch-mediated cell-cell interaction. We have isolated a highly conserved mammalian homolog of Drosophila numb, m-numb. During mouse cortical neurogenesis, m-Numb is asymmetrically localized to the apical membrane of div...
متن کاملSegregation of myogenic lineages in Drosophila requires numb.
Terminal divisions of myogenic lineages in the Drosophila embryo generate sibling myoblasts that found larval muscles or form precursors of adult muscles. Alternative fates adopted by sibling myoblasts are associated with distinct patterns of gene expression. Genes expressed in the progenitor cell are maintained in one sibling and repressed in the other. These differences depend on an asymmetri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 11 شماره
صفحات -
تاریخ انتشار 2001